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Collective thermal excitations in microemulsions are studied within the hydrodynamic correlation
theory. Spherical microemulsion droplets (micelles) are coated with a thin film and immersed in a fluid
with different properties. The compressibility and viscosity of the bulk fluids are taken into account as
well as the curvature energy and the redistribution of the surfactant concentration on the micelle sur-
face. The method of analysis comprises a solution of the linearized dynamic (hydrodynamic and bound-
ary) equations with random (bulk and surface) sources and application of the fluctuation-dissipation
theorem. The spectral densities of correlation functions are obtained for both the hydrodynamic fluctua-
tions in the bulk fluids and the shape fluctuations of micelles. The dynamic structure factor of the model

microemulsion is calculated.

PACS number(s): 68.10. —m, 47.40.—x, 05.40.+j

I. INTRODUCTION

In the past years, the physics of microemulsions has
been of great interest [1-6]. The microemulsions are
formed after the surface-active substances (surfactants)
are added into the mixture of two liquid components that
are, under usual conditions insoluble in each other (usual-
ly oil and water). At some critical concentrations of the
surfactants, the components yield a homogeneous solu-
tion of high stability. In oil-water microemulsion the
dispersed phase exists in the form of droplets (micelles) of
one liquid (oil) in the other (water). The micelles are sta-
bilized by a surfactant monolayer of amphiphilic mole-
cules. Dynamic properties of such systems depend on the
nature of the fluid-fluid interface which can have complex
viscoelastic behavior [7]. Even within the phenomeno-
logical approach when the surface layer is considered to
be infinitely thin, the dynamics of the interface cannot be
explained on the basis of surface tension alone [6,7]. The
coefficient of the micelle surface tension is anomalously
low and the dependence of the surface energy density on
the curvature should be taken into account [5,8,9]. The
phenomenological treatment requires the length scales of
the problem to be much larger than that of a molecular
size. This is true for microemulsions with the charac-
teristic size of the droplets of the order 10° A. Lipid vesi-
cles [5,10,11] in aqueous solution have even much larger
linear sizes and within the phenomenological theory the
micelles in “good” microemulsions and vesicles can be
considered simultaneously [9].

In this paper, we are interested in the thermal fluctua-
tions in microemulsions and in solutions of vesicles. The
micelles and vesicles are assumed to have a spherical
shape in equilibrium. They will be modeled by fluid
droplets immersed in a fluid with (generally) different
properties and coated with a thin film. Assuming dilute
solutions of the droplets, we can focus our attention on
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the study of the dynamic properties of a separate droplet.
Only the low-frequency collective excitations in these sys-
tems will be considered. We suppose that in this case, the
description is possible in terms of the usual hydrodynam-
ics. The relaxation of the micelle or vesicle surface to its
equilibrium spherical form has been already investigated
in a number of theoretical papers, e.g., [7,9,12-17]. In
these works, the dispersion laws of the relaxation modes
have been calculated in various approximations; a good
discussion of the theories can be found in Refs. [7,9,16].
The most general approaches have been developed in
Refs. [7] and [9]. In the first of these papers, the fluctua-
tions in a fluid droplet immersed in a fluid medium are in-
vestigated in detail assuming the interface between the
two fluids has viscosity and compressibility in addition to
surface tension. In the latter work [9], the dynamic prop-
erties of spherical micelles and vesicles with anomalously
low surface tension are considered. Describing their sur-
face, the terms depending on the curvature were retained
in the surface energy expansion. The boundary condi-
tions at the interface have been found which also depend
on the curvature. Moreover, the redistribution of the
surfactants on the micelle surface was included into the
consideration which corresponds to the surface compres-
sibility as considered in (Ref. [7]). As a result, a specific
surface mode connected with the dynamics of surfactants
was predicted. Within the linear hydrodynamic theory
[9], we have obtained in our previous paper [18] an exact
equation for the proper surface modes of spherical mi-
celles and vesicles. This equation allowed us to calculate
the surface vibration spectra more precisely compared
with the previously known results. However, in all the
above mentioned papers the fluids inside and outside the
droplets were assumed to be incompressible and only the
fluctuations of local quantities connected with the devia-
tions of the surface form from its equilibrium shape have
been studied. For this reason, for example, the spectrum
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of the density fluctuations does not differ from that of the
fluctuations of the dielectric permitivity. Moreover,
among the collective excitations two contributions can be
distinguished. The first one is connected with the bulk
hydrodynamic modes and the second with the surface
modes. The dispersion law of the last modes is deter-
mined by the local surface energy of the droplets and the
hydrodynamic flows in the bulk fluid layers close to the
interface. In our recent paper [19], we have already
developed a hydrodynamic correlation theory of the
thermally fluctuating micelles and vesicles assuming the
bulk fluids are compressible. Both the hydrodynamic and
the surface modes have been considered. However, we
have not taken into account the dependence of the sur-
face energy on the curvature and the dynamics of the sur-
factants. The present paper significantly generalizes the
theory [19]. The redistribution of the surfactants at the
micelle surface is now taken into account as well as the
dependence on the curvature. We present a correlation
theory of the thermal fluctuations of micelles and vesicles
assuming bulk fluids inside and outside the droplets. The
method of analysis comprises a solution of the linearized
hydrodynamic (Navier-Stokes and continuity) equations
with random (thermal) stresses (Sec. II). The equations
are solved with boundary conditions which seem to be
appropriate for micelles and model vesicles with im-
penetrable surface layers. The boundary conditions con-
tain the thermal surface sources. The spectral densities
of the correlation functions for hydrodynamic variables
are found based on the fluctuation-dissipation theorem:
in Sec. III, the bulk modes are considered and in Sec. IV,
we find the generalized susceptibilities and spectral densi-
ties of the fluctuating hydrodynamic fields determined by
the random sources acting at the interface. In Sec. V the
spectra of the collective excitations of micelles and vesi-
cles are studied in some detail for various relations be-
tween the droplet sizes, the penetration depth of the
viscous wave, and the sound wavelength. Section VI
deals with calculations of the dynamic structure factor of
microemulsions within the used hydrodynamic model.

II. FORMULATION
OF THE BOUNDARY-VALUE PROBLEM

Let us assume that the motion of the fluctuating veloci-
ties, density and pressure fields is desribed by the linear-
ized continuity equation and Navier-Stokes equation con-
taining random stresses o, [20]:

d

- —+ -v=0 1

at«Sp pV-v , (1
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S =B (VXVXY), + %’L+§ V,V-v
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Here, 7 and § are the viscosity coefficients, 8p is the devi-
ation from the equilibrium mass density p, v is the fluid
velocity, and c is the velocity of sound. The temperature
T is assumed to be constant throughout the system. The
variable part of the pressure is 8p =c28p. In what fol-
lows, the indices i =1 and 2 will refer the quantities to
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the regions interior and exterior to the droplet. The
small radial displacements of the droplet shape from the
sphere can be expanded in spherical harmonics,

R(6,9,0)=R, [1+ Su,, ()Y, (6,9) | , 3)
Im |

where R is the equilibrium radius of the droplet. The
index m runs from —! to /, and / changes from / =2 to
some /.. ~7R,/d determined by the mean interatomic
distance d [7]. The mode /=1 is excluded since it corre-
sponds to motion of the center of mass of the droplet.
The mode / =0 is connected with the uniform dilation of
the droplet.

In our phenomenological description, the interface has
a negligible thickness and is characterized by the surface
density o° of the thermodynamic potential [9]. It can be
represented using the expansion in the local curvature ra-
dii of the interface, R | and R, as follows:

K
R\R,

11
—+
R, R,

B
Rl RZ

+K

o’*=a—f 4)

Here, ° is expanded to the second order using the invari-
ants (R, +R,)/2 and 1/R,R, (the mean and Gaussian
curvature, respectively). The quantity B/2k is the so-
called spontaneous curvature. The expansion coefficients
a, B, k, and K have been discussed in Refs. [8,9]. We
only note that a is the usual surface tension coefficient in
the case of the planar interface, S=0 for vesicles and
B>0 for micelles (if the curvature radii are measured
from the interior to the exterior of the micelle). The con-
ditions k>0 and 2k +K >0 must be fulfilled to make the
function (4) positively defined. The stability of the spher-
ical micelle with respect to small perturbations is ensured
by the condition

__2_B_+KI(1+1)
R, R}

a,=a >0, (5)
and the micelle distribution in radii has a sharp max-
imum at the radius R if kg T /87(2k+K) << 1, where kp
is the Boltzmann constant and 7 is the temperature. This
condition allows us also to neglect a renormalization of
the parameters a, 3, k, and K that is due to thermal fluc-
tuations [9].

In the presence of surface-active molecules, the energy
density parameters depend on the surface concentration
of the surfactants. Small deviations dn° from the equilib-
rium value of the surfactant density n° can be expanded
analogously to Eq. (3),

dn’=n’ |1+ Evlelm(0,<p) . (6)
Im

Here, the minimum value of / is also 2. Using the as-
sumption that there is no change in the total amount of
surfactant material in the surface layer, it is easy to find
that v, is of the second order in the small quantities u
and v. The terms with v, are also excluded since the
=1 mode corresponds to the translational motion of the
undeformed droplet. In this case, there is no motion in
the surface layer and the droplet moves like a hard sphere
[21].
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The excess energy of the surface,
E*= [ d*8(r—R)IV(r—R)|¢, (M

can be found expanding €, the & function, and
grad(r —R) in the small quantities 6n° and u. In €, we
have a=a(n’*+8n°). The dependence on 6n° for the oth-
er coefficients can be neglected [9]. Using the above dis-
cussed conservation of the total amount of surfactants in
the layer, the result of evaluation to the second order in
the small quantities reads

ES=1R} 2 [e,(I = 1)1 +2)|uy, >+ Blv;, 121,

) ®)
B=(n s)2 aes saa(n )>0

anE " on’

An analogous expression [with / = 1 in the second term of
Eq. (8)] has been already used in Ref. [9].

The adsorbed surfactant layer can essentially affect hy-
drodynamic properties of the droplet. The changes of the
droplet shape that are connected with the motion of the
liquids lead to stretches and compressions of the layer
and, consequently, to the changes of the surfactant con-
centration. Corresponding additional forces must be
then taken into account in the boundary conditions at the
interface [21]. For the hydrodynamic fields described by
Egs. (1) and (2), these conditions are supplemented with
terms depending on the surface velocity v* (the surface
momentum density p°v®). For the case of incompressible
bulk fluids, the linearized boundary conditions that take
into account the dependence on the curvature have been
discussed in detail in Ref. [9]. We will write these condi-
tions for compressible fluids inside and outside the drop-
let and supplement them with the radial and tangential
forces at the interface that are determined by the
difference of the random volume stresses ff=0'>'—o!l.

If such a description the boundary condltlons describ-
ing the dynamics of the interface are as follows:

vi=R, v;=v,, 9)
. 21, v,
pli;—8p, + 51—7 Vovit 2 — -
—Lla—-Du+2)u,, Y,
R,
27]2 aUZ
=—56p,+ §2_? Vv, +29, arr ;> (10)
Se S aa
PUe™ 1 gns V.8n°+V, (v, —n505,)
+ 9 (M, — MUy ) =fF (11)
ar MY — N2V, P
ag" +n°V,05=0 . (12)

These equations generalize the usual conditions for the
tangential and normal components of the viscous stress
tensor, and for the continuity of normal and tangential
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velocity components. In agreement with the preceding
discussion, the continuity equation (12) for the surfactant
material in the layer is used. The indices r and ¢ denote
the radial and tangential components of the vectors in the
spherical coordinate system with the origin located at the
center of the equilibrium droplet.

In these equations, the very slow diffusion of the
surface-active molecules between the layer and the bulk
fluids is neglected [9]. This approximation is good for the
surfactants which are insoluble in the liquids. The used
boundary conditions imply also that there is no flow of
mass from one side of the interface to the other side.
This assumption is commonly accepted for micelles
where the bulk fluids outside and inside the micelle are
different, and often used for vesicles [7,9]. For vesicles,
however, both fluids are more or less the same and the
use of stick boundary conditions is then not necessarily
appropriate. This shortcoming limits our phenomenolog-
ical theory to model fluid droplets with impenetrable sur-
faces.

In the linear approach, the amplitudes u,,, of the sur-
face displacement expansion (3) are small compared to
unity. For this reason, the boundary conditions are taken
on the surface of the undistorted spheres (r =R).

It is convenient to write all equations in the Fourier
transformed form. We will use the same notation for the
quantities of interest and their Fourier components re-
placing the differentiation in time 3/9t by —iw.

The spectral densities of the fluctuating hydrodynamic
fields will be obtained using the fluctuation-dissipation
theorem (FDT). To make this (see, e.g., Ref. [22]), one
must find a system of linear stochastic equations for the
spectral amplitudes of the parameters, say, £;(¢), and the
corresponding generalized forces F;(?),

£ (0)= 3 aylio)F (o), (13)
k

where {aj ] is the matrix of generalized susceptibility.
Then the correlation matrix of the spectral amplitudes
§;(w) [for the stationary processes §;(¢) and F;()] is

(§j(@)t(0)=(§;£1)8(0—0") , (14)

and the FDT in the classical limit reads

<§j§k> = (ajk a,:]) . (15)

The Fourier transformation of this spectral density ma-
trix determines the time correlation functions
(£;(£)E£(0)). The correspondence between the general-
ized forces and coordinates can be found from the expres-
sion for energy dissipation in the system under the action
of the generalized forces F e In our case, we must know
the expression for the power Q dissipated in the system
due to the random sources [20]. Using the well-known
hydrodynamic formula for the dissipation of energy [21],
we obtain

0=0W+Q@ 40", (16)

with
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Q(i)z_j‘(V.)dSrvi,f(i) , Q(s):_j'(s)dsfs.vs ,
1 =Veol "

In Eq. (17), V| and V, denote the volume of the droplet
and outer fluid, respectively, and S is the droplet surface.

Owing to the linearity of the hydrodynamic and
boundary equations, the total solution of the boundary-
value problem for the inhomogeneous equations can be
represented as a sum of two contributions. The first one
will satisfy the inhomogeneous equations in both regions
with the flow velocities vanishing at the interface. The
second one is determined by the homogeneous equations
without random forces but with the hydrodynamic fields
being subjected to the boundary conditions (9)-(12).
Thus, the total spectral densities of the hydrodynamic
correlation fields split into two independent contributions
corresponding to the spectral densities of the fields excit-
ed by the random volume stresses and by the random
forces f* distributed on the interface S.

i=1,2.

III. SPECTRAL HYDRODYNAMIC FLUCTUATIONS
WITHIN A SPHERICAL CAVITY

For the thermal flow with the velocity vanishing at the
interface, the interior problem fully separates from the
exterior one. Here, we will consider the thermodynamic
fluctuations inside the sphere with the radius R,. This
section is as a whole based on the results obtained for the
first time in Ref. [23] (see also Ref. [19]).

The Euler velocity field inside the droplet can be
represented using the basis functions for the vector
Helmbholtz equation (in this section, the index 1 referring
to the interior of the droplet is omitted),

V(V-L)=—k?L,VX(VXM)=k>M ,
VX(VXN)=k2N .

(18)

Three sets of solutions (finite at » =0) are determined as
follows [24]:

L,m=%V[Y,,,,(6,¢J)j,(kr)] .
(19)

My, =VX (1,0, Njp=7 VXM,

Here, j;(kr) are the spherical Bessel functions. The ve-
locity expansion is then

virLow)=3 uf(w)A\r), A=L,M,N, (20)
A A
where we have introduced the normalized functions
- 1/2
A=a/|[aram-arm]|". @1

From the boundary conditions, we obtain transcendental
equations for the proper values k;,

JiBw)=0, k,=B,, /Ry,
p=—11+1, (22)
ki=vm/Rg .

YInjll(Yln )+.u‘.ll(7/ln ):0’
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The first equation determines the proper values k; for the
function M, and the second pair of equations gives k; for
the function L and N. The prime denotes the
differentiation with respect to argument and » is a root
number. The cumulative index A from Eq. (20) is thus a
set of the summation indices /, m, and n. The normaliz-
ing coefficients in (21) can be easily calculated but we
shall not use them.

We expand the volume densities of the forces f(r,w)
into the series as in Eq. (20) with expansion coefficients
fi(w). Using the orthogonality of the proper functions,
we find from the hydrodynamic equations (1) and (2) in
their spectral form, the following relations between the
flow velocity amplitudes and the amplitudes of random
forces:

| S o)
uﬁ\"’N(a))Zil—z R
p —iot+vky
Y
—iw
ublo)y=1 ———— sz - (23)
) P —o+ck) —iovk;
v=mn/p, v,=(E+4n/3)/p .
For a periodic force with the frequency o,
D(r,1)=1{D(r,0)e "'+ P*(r,0)e'], (24)

the energy absorbed in the system per unit time is ob-
tained after the time averaging in the form

Q=—1ReJuioi*(w). (25)
Al

The total dissipation of the power (17) is obtained to be
Q)=—Tuf)f* ). (26)
AL

As has been mentioned above, Egs. (25) and (26) allow
one to choose the energetically conjugated generalized
coordinates and forces and to write down the susceptibili-
ty matrix ai}.(io). If the coordinates are u (), then the
forces are Fji(t) and f{ =dFj /dt with the Fourier
components fi(w)=—iwFj(w). Then the application
of the FDT is straightforward [22] and results in the fol-
lowing spectral density matrices:

(ultul*) = kpTd; —iw
Uuy /o € 2 212 . 2 0
mp —w*+cki tiovk;
KT 27)
(ubyBe), =2 pe L p=mnN.
) 'y —iw+tvk;

The spectral densities differ from those known for an un-
bounded homogeneous liquid only by a discrete character
of the wave numbers.

As an illustration, we give also an expression for the
mean power dissipated in the system, (Q ). In this case,
the FDT is to be used in the form

ikgT
(u,F} )w:ﬁ %afm[afg] 1. (28)

Substituting #'(¢) and fj(¢) into Eq. (26) as their
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Fourier integrals of u{!(») and f{(w), averaging it and
applying the FDT, the formula for {Q) becomes espe-
cially simple:

kyT
2 SIvB v+l (29)
0 A

(Q)=-—

Finally, the spectral density of the velocity correlation
function is easily written from Egs. (20) and (23) as fol-
lows:

(v(r,)v(r', 1) =3 (luf|?),A(r)- Af (),
A
A=M,N,L . (30)

The spectrum of the mass density fluctuations can be
found using Eq. (30) and the continuity equation,

(8p(r,1)8p(r',t")),,

2

i T *

L;‘(r)-Lk(r’) . (31)

Pk,
(2]

=3 (uil?),
A

One can analogously find the spectral densities of the
Euler field in the region exterior to the droplet.

IV. FLUCTUATIONS EXCITED
BY SURFACE RANDOM SOURCES

In this case, we have to obtain the solutions of homo-
geneous Navier-Stokes equations in the regions interior
and exterior to the droplet. The random sources are now
located on the droplet surface. It is convenient to search
for the solution expanding the velocity fields in the series
of the spherical vector functions [24] P, B, and C. For
example, the velocity inside the sphere is

vi(r,0)= 3 [P(0,p)F;(r,0)+B,;(6,9)G ) (r,0)
x

+C(6,p)H (r,0)], A=I,m . 32)

One can easily find from the Navier-Stokes equations a
set of equations for the scalar functions F, G, and H. The
interior solutions finite at » =0 have the following form:

CiQ(x)+CMI+1)=Ryu ,
CiH(x,)+CY1(I+1)=Ryu ,

CL+CNQy)+1]=CE+CY[H (Y, +1],

3759
p +1
Fy=Cljityn+cfEEL
unr
jl(k1||’)
G, =[lU+D]"*|CT—F/——
1 [ ] 1 k1||"
. Jitkyr)
+c¥ j;(kur)+°w- H ’
(33)
H,=[1(1+1)]"2C¥j, (k7).
Here, we have introduced the notation
ky=(iop/n)'"?,
(34)

k1||=[(cl/w)2(1—imv1"/c%)]—1/2 .

The superscripts in the integration constants C; have the
same sense as above and the indices of spherical harmon-
ics are omitted. Changing the indices 1 for 2 and substi-
tuting the spherical Hankel functions of the first kind,
h{V, instead of the spherical Bessel functions j;,, we ob-
tain the exterior solutions. They correspond to longitudi-
nal and transverse damped waves. Note that the general
exterior solutions must contain both 4!’ and the Hankel
function of the second kind. To exclude the exponential
divergency as r — o, we must use 4!’ if its argument has
a positive imaginary part, and k% in the opposite case.
However, in what follows, these functions enter the equa-
tions only in such combinations that are invariant with
respect to replacement of the indices 1 and 2.

The unknown integration constants C{fz will be deter-
mined from the boundary conditions (9)-(12). The veloc-
ity of the interface and the random forces at the surface
can be expressed using the expansions analogous to Eq.
(32),

Vs(e,(]J):E( ,SmPI,n+G,SmBIm +Hf,,,C,m) ’
" (35)
fs( 6’¢)=E (flsmplm +glsm Blm +hlsm CIm ).

Im

Equation (12) and the conditions of the continuity of the
tangential velocity components lead to the following ex-
pression:

—iwR v, =[1(1+1)]'2Gs, =[11+1)]"%G,;,,(R) .
(36)

Using it, we find a system of linear inhomogeneous alge-
braic equations for the coefficients C and the displace-
ment amplitudes u,,, for all / and m (below, the indices of
the spherical harmonics will be omitted),

(37)

(38)

(39)
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ulay(I+2)(1— 1) —p°0’R]—Ciny [y} +4Q(x,)—

+CNAU+ 1), [ Q) —1]+Chn,[p +4H(x,)—21(1+ 1)]—CY20(1+ Dy, [H(y,) — 1]=R

[—iwp*R§—BI(I+1)/iw]{C

—21,{CY[H(x,)—1]—

Here, in addition, we have introduced the notation

ol xji(x) ) xh{M(x
X )= — X :’———*‘ y
Ji(x) h;“(x)
x;=kyRo, y;=ky Ry, (42)
~ J&) hi(Ey)
”‘=C{’§—1, C{’=Cz"~§-——, E=xb. 4 tydyy -
2

The equations determining the coefficients CY, are in-
dependent from the above given equation and result in

C¥=AMps
R,
VI +1)j,(y,)

43)
Am=

{—iwp'Ro+m[Q(y,)—1]

+ny[H(y,)— 1]}~

Using the Kramer’s rule, the coefficients C can be easily
found from the linear equations (37)-(41) through the
amplitudes of the random forces. For example, the solu-
tion for the interior of the droplet can be written as fol-
lows:

Ci=AYf+ A%, CV=aNf+ 4V (44
Explicit expressions for the matrices 4 have a very bulky
form and we do not write them here. These matrices
determine the frequency-dependent generalized suscepti-
bilities for the random expansion amplitudes of the hy-
drodynamic fields. Analogously, as in the preceding sec-
tion, the energy dissipation Q' from Eq. (17) allows us to
determine the correspondence between the Fourier am-
plitudes of the generalized coordinates and forces and to
find the susceptibility matrix. The mean power absorbed
by the system, in the case of a harmonic force
5t )= (L[ (o) exp( —iwt )+ f**(w) expliot)], is
2

Q= — ReE(F,mf +G;git+Hi hsY) ,  (45)

where we have also used the expansions (35). Then the
spectral densities of the fluctuating expansion amplitudes
are found by using the FDT. To make this, we write the
linear relations between the surface velocity amplitudes
and the coefficients C, [see Egs. (33), (44), and (45)],

Fs=CtQ(x)+CMu+1) ,
G*=VII+D{CT+CY[Qy)+1]),
H=VI({I+1)jy,)C¥ .

Then, using Eqgs. (43) and (44), we have

(46)

éjlv[Q(}’1)+1]}+2771{CL

21(1+1)]
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(40)
[Q(x)—1]=CY[Qy)+1—1U+1)+p}/2]]

CY[H(y,)+1—1U+1)+p3/2]}=R,g’/VII+1) . 4D

F‘=aFffS+aFggS, GS=afoS+aGgg’, Hs:aHhhx .
(47)

The new matrices a are determined by the relations
oaFr of | Q(xy) [+ i
a® @ | l\/l(l+1) VIA+D[Qy,)+1] |
AL 4tz

X ANS 4N | (48)

a"=vI(I+1)j,(y,)aM™
Application of the FDT to Egs. (45) and (47) leads to the

following spectral densities of the fluctuating velocity am-
plitudes:

. kgT .
<FiFi'* >w:6;‘»}»' E 2 Rea{){ ’
7TRO

. kgT
(G3G3*) ,=8——
7TRO

Rea)\f

. kT
(F$GS* )(O=8M,51~:;—2(af{+af\*), A={l,m|
0

These results allow us to find the spectral densities of any
bilinear combinations of the hydrodynamic fields. For
example, the spectral density for the amplitude C¥ (the
amplitude determining the fluctuations of density) is, us-
ing Egs. (49) and (46),

H+Qr - VIU+1) 4}
(1+Qf (y]Qf (x )~ 11 +1)
(50)

kT
<|Cvllm' )w: 2
TR

The roots of the determinant of Egs. (37)-(41) corre-
spond to all kinds of the collective excitations of micelles
or vesicles in the used viscous blob model.

V. APPROXIMATE RESULTS
FOR THE SHAPE
AND SURFACTANT FLUCTUATIONS
OF MICELLES AND VESICLES

The spectral amplitudes u,,,(w) can be obtained from

the boundary condition (9) and the expression for the ve-
locity expanded in the vector functions (19),

) . I
—ioRup, (@) =CY, 10+ 12 L CE k) 51)

1

Hence, the spectral density of fluctuations of the droplet
surface displacement is [see Eq. (46)]
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< |ulm |2>w=< IFism |2>w/(R0w)2

kyT

s Re[lU+D AN +0)(x AT, (52
7TRO

The character of the collective excitations of micelles and
vesicles is determined by the relations between their sizes,
the penetration depth of the corresponding viscous
waves, and the sound wavelength. Typical sizes of mi-
celles are of the order 102-10% A (“good microemulsions”
from the point of view of the phenomenology are those
with typical sizes of the droplets significantly exceeding a
molecular size; the phenomenological theories would be
compared with experiments on the systems of droplets
with large radii such as 10* A), therefore wR,/c is small
compared to unity for the studied low-frequency acoustic
excitations. If, moreover, the penetration depth of the
shear wave is much larger than the micelle radius, then
Ry(w/v)!"2<<1 and the shape oscillations are damped.
The stretching forces acting on the surfactant layer are
small and the surface layer can be considered to be in-
compressible. These conditions can be used for
significant simplifications of the analytical form of the
spectral density function (52). It must be taken into ac-
count in such calculations that the results depend on the
order in which x,, and y,, reach their small or large
values.

(1) Let the effects of compressibility be small so that
the conditions |x,,| <<[y,,| <<1 are satisfied. In this
case, restricting ourselves to the dominant terms in |y, ,|,
we find [19]

kyT
g 1Yo =—25 [y (I = DU +2)7gy] "
TR o
1 211
X |0*+ | — —n (53)
Tal
Here,
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L —qu—nra+nu+n@+nr
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g, =2(1*— 1) +Q21*+ 1)y, ,
pr=(212+41+3)m,+21(1+2)n, , (54)
2
r=— |p (1 + 1)1+ 1) (5, +7,)
1
p1q (1 +2)
2 —_
) | 32+ s)
pp1(12—1)

T p20=3)21—1)

These results correspond to Ref. [18] where the poles of
the spectral densities of the surface displacement have
been analyzed in more detail for incompressible fluids.
Due to the condition wr, <<1, the spectrum (53) consists

of the peaks close to Lorentzians with the widths deter-
mined by Eq. (54). It corresponds to an overdamped
mode of the shape vibrations. The static correlation
function of the amplitudes u,,, (¢) is

(u,m(t)ulf,,(t))= f ( |u1m |2)a,d(o
kyT
Ra(I—1)(1+2)

-172
T

Tal

(55)

In the considered example, the effects of compressibility
lead to additional (linear with respect to 77/c2p) contribu-
tions to the relaxation time 7,, so that 7, becomes
T+ vim/cipy+v,m,/cip, with dimensionless coeffici-
ents ¥, and ¥,. The influence of these terms on the form
of the spectrum is small. The result (55) differs from the
stationary one [following from the surface energy (8)]
only by a factor close to unity.

(2) Consider the case when |y ,|<<|x;,|<<1 (e.g.,
large values of the viscosities 7, and 7,). The spectral
density of the displacement fluctuations is again a
Lorentzian [19],

kgT Tod
7R3, (14+2)(1—1) 1+(w1,)*
(I—1)n,+27,
a(l—1) ~°

(luy 12, =

(56)

Ta2 = <Ko

but its width has a different parametrical dependence on
the viscosities.

(3) In the opposite case when the penetration depth of
the shear wave is small, |y, ,| >>1, the spectral density of
the shape fluctuations correspond to the capillary waves.
Taking into account |x, ,| <<1, we find [19]

ksT  Vow0/2
(g y=————— 5, @>0, (57)
mRop; (0°—wp) + o0
where
L a(I—=1)(+2)
Q=" 3 >
Rop;
2 (58)
e 21+ 1)V n1myp5(p1 —p,)
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Equation (57) is applicable for not too small frequencies
and the result is correct for small ®,/w,. In this case, the
viscosities are small and it is not necessary to take into
account the presence of the surfactants in the layer. The
capillary wave is low damped when 1?/aR,p <<1. This
holds for vesicles while for micelles, as a rule, the oppo-
site inequality takes place [9].

Using w,/wy<<1, the spectrum (57) can be expressed
as

g 12) =
" 70, RV 2040,

(59)
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This leads to a static correlator with the main contribu-
tion from Eq. (55),

kpT 7]
<|u1m|2>m:—8— S

1+0
P1R(5)‘0(5)

(60)

W

(4) We will give one more result [19] corresponding to
the conditions [y, ,|> [x, 5| >>1:

2 kBT 1
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Here, the viscosities are small again, 75>>71,, and the
influence of the surfactants is negligible.

(5) The inhomogeneity of the surfactant concentration
on the droplet surface leads to an additional contribution
to the spectral densities of the hydrodynamic fields. The
corresponding concentration mode has a specific depen-
dence on the frequency and viscosity [9,18]. This depen-
dence displays best of all in the spectrum of fluctuations
of the concentration amplitudes (6),

1(+1) kpTI(I+1)

(i 12y =——— (G}, |*) =
im| G| 7m0 R

Rea8,, -
(a)RO)2 Im,Im

(62)

Let the penetration depth of the shear wave be small as
before, [y, ;| >>1, and the vibration frequencies at small
viscosities are much larger than those for the capillary
waves from Eq. (58), that is, w>>w, If, moreover,
p’<<Ryp;, and |x,,|<<1, we obtain the following
simplification of Eq. (62) that coincides with the results
found in Refs. [9,18]:

3L+ D)k T
TREB(V 2pm,+V 2p,m,)

( lv{m |2>m:

. BI(l+1)
XRe |iw 2 — —
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Integrating this expression over all frequencies, we obtain

kg T
<|vlm(t)|2>=RB,2)B

in agreement with the static correlator obtained from the
Boltzmann distribution with the energy (8).

The spectral densities of the amplitudes (49) determine
the correlation functions of the velocity inside the mi-

) (64)
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celle. In the approximation |x;,|<<|y,,|<<1, they
have the same frequency dependence as in Eq. (52). In
this approximation, we have calculated the spectrum of
the micelle or vesicle mass density fluctuations. The
spectrum is determined by the fluctuations of the ampli-
tudes CL. Using the properties of spherical functions, it
can be expressed in the form

(8p(r,1)8p,(r',1")),,

_ kgTpim, w*
4mct(n,+n,) 1+(a)v”i/c%)2
Y
X ¥ P/(cos(r,r')) rrz
>1 RO

o AN 3),
a (I —DU+2)[1+(0r,)?]

(65)

The above given equations allow one to write the spec-
tra of the hydrodynamic correlation functions corre-
sponding to the surface collective modes. The complete
results for the correlation functions of hydrodynamic
fields are the sums of contributions from both the surface
mode and the bulk modes (30), (31).

VI. DYNAMIC STRUCTURE FACTOR
OF MICROEMULSIONS

The effects of compressibility and consistent calcula-
tions of the density fluctuation spectra are of considerable
interest in various applications. For example, the fluctua-
tions of density determine the spectra of inelastic scatter-
ing from the solutions of micelles and vesicles. The col-
lective excitations have an effect on the scattering cross
section with small energy transfers as in the slow neutron
and visible light scattering. The obtained spectrum of the
mass density fluctuations can be used to determine this
cross section and to interpret the neutron spin-echo ex-
periments on such systems [25]. In our recent paper [26]
we considered microemulsions of incompressible bulk
fluids also taking into account the redistribution of the
surfactant density at the micelle surface. The dynamic
structure factor (DSF) of the inelastic scattering of neu-
trons has been found there. In the region of frequencies
much larger than the frequency of capillary waves, it pre-
dicts the existence of satellite peaks (with respect to the
central peak of the DSF) which are determined mainly by
the dynamics of surfactants. The central peak is connect-
ed with the fluctuations in the droplet shape. Comparing
the obtained analytical formulas with the experiment we
have, in particular, estimated a bending elasticity
coefficient to be about three times smaller than its value
found in Ref. [25]. Smaller bending elasticity was report-
ed also from experiments based on Kerr-effect measure-
ments [27] (for more references and discussion about the
confrontation of the theoretical ideas with experimental
results see Refs. [28] and [29]; the latter work presents
also a simple phenomenological approach describing the
formation of thermodynamically stable spherical mi-
croemulsion droplets in a dilute suspension). In the
present paper, we give a more general result concerning
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FIG. 1. Dynamic structure factor of an oil microemulsion
droplet (with the parameters of castor oil) in water. The droplet
radius is Ry=400 ;\, and kR;=0.5 (curve 1), 0.45 (2), 0.4 (3),
0.35 (4), and 0.3 (5). Surfactant fluctuations are not considered.

the DSF of microemulsions that takes into account the
compressibility of the bulk fluids. Based on the density-
density correlation function from Eq. (31) and the results
of Sec. IV, one can determine the DSF as a Fourier trans-
form in space

S(k,w)=f fdrdr’exp[ik-(r—r’)]

X (8p(r,1)8p(r',t")),, . (66)
The result of integrating for the DSF of a micelle is
R} ) 2
S, (ko) [P0 L
Cq 1+((1)'V1H/Cl)
Q(kR)—Q(x,) |?
X3 Q2I+1) j(kRy)———————
; Ji 0 (kRO)Z—X%
x{|ck®), - (67

S(k,w)
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10°
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FIG. 2. Dynamic structure factor of the same oil droplet as
in Fig. 1, with R,=400 A, kR;=0.2, and various solvent
viscosities: 7,=0.001 (curve 1), 0.1 (2), 0.2 (3), 0.3 (4), and 0.4 (5)
kg/(ms). Surfactant fluctuations are not considered.

FIG. 3. Dynamic structure factor of a microemulsion droplet
in the low-frequency region for two surface moduli B [Eq. (8)]:
B=0.05 (curve 1) and B =0.008 J/m? (curye 2). Other parame-
ters are as follows: kR,=0.3, R,=400 A, p,=900; p,=1000
kg/m?, n,=1; 1,=0.2 kg/ms, £=0.757, ¢, =1400; c,=1500
m/s, a;-,=10"*J/m?% p,=4.5X 1077 kg/m?

The structure factor for the micelle environment,
S,(k,w), can be found analogously. The results is the
same as given by Eq. (67) if the index 1 is replaced by 2
and Q(x) by H(x,).

The numerical calculations of the DSF for an individu-
al microemulsion droplet, S,(k,w), are represented here
by Figs. 1-4. Figure 1 illustrates the dependence of the
DSF on kR, for the oil droplet (with the parameters of
castor oil) in water. Figure 2 shows the DSF of the same
oil droplet but for constant kR, and various solvent
viscosities. In both the cases, the surfactant is not taken
into account. The DSF in the presence of surfactant is
given by Figs. 3—4. The dependence on various surface

1
—~
3]
~
v
]
O-=Fmit—r e S
170° 10° 107 10° 10° 10" 10
w [1/5]

FIG. 4. Dynamic structure factor of a microemulsion droplet
for various solvent viscosities 7,: 0.05 (curve 1), 0.1 (2), and 0.2
kg/ms (curve 3). The droplet radius is R, =400 A, kR;=0.2,
and B=0.05 J/m?. Other parameters are the same as in Fig. 3.
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moduli B [see Eq. (8)] is considered in Fig. 2, while Fig. 4
illustrates the change of the DSF when the solvent viscos-
ity coefficient 7, changes.

These figures can be supplemented by the following
note. The numerical analysis that we carried out showed
that the form of the DSF is weakly sensitive to the value
of the surface tension coefficient. Besides this, the contri-
bution to the DSF that is due to the random sources dis-
tributed in the volume of the droplet (i.e., not at the sur-
face) is small for / > 1 and kR, <0.5, and can be neglect-
ed. For the values of parameters that have been used in
our calculations, the main contribution is given by the
nearest surroundings to the interface. The contribution
of the fluctuating surroundings rapidly disappeared with
the distance from the droplet surface. This allows us to
conclude that the DSF of the microemulsion in our ap-
proximation consists, in fact, of additive contributions
given by the dynamic structure factors of independent
droplets and is simply proportional to their concentra-
tion. At the same time, the effect on the DSF given by
the nearest surroundings exhibits itself through the sol-
vent viscosity as is demonstrated by the presented numer-
ical calculations.

VII. CONCLUSIONS

We have investigated the thermal surface and bulk hy-
drodynamic fluctuations of fluid droplets (micelles and
vesicles) coated with a thin film and immersed in a fluid
medium. There are two equivalent ways of finding the
equilibrium correlation functions for such systems. In
the first method, the boundary-value problem can be
solved as an initial-value problem where the initial values
are random variables distributed according to an equilib-
rium ensemble. The time-dependent correlation func-
tions can be found if the static correlation functions,
which determine the amplitudes of the fluctuations, are
known. Such a method was used by us in Ref. [26],
where a more simple case of incompressible fluids was
considered. Here, we have used the second method based
on a solution of hydrodynamic and boundary equations
including Langevin forces (fluctuating stress tensor). Ac-
cording to Ref. [7], this method is inappropriate for prob-
lems such as we have here in which the stresses must
satisfy conditions on the boundary. However, dividing
the solution to the contributions corresponding to the
fields excited by the random volume stresses and the
fields excited by the surface sources, the application of
the fluctuation-dissipation theorem allowed us to find the
spectral densities of the hydrodynamic correlation func-
tions of interest in a quite simple way. The approach
based on the FDT has been already used in Ref. [15] to
study the shape fluctuations of micelles assuming the
bulk fluids inside and outside the micelle being in-
compressible. In that work, only the radial components
of random forces on the surface have been taken into ac-
count. This means that only the so-called poloidal veloci-
ty fields [30] are studied and the toroidal mode is neglect-
ed (C fz =0 in our notation). This is true in the case of

V. LISY, A. V. ZATOVSKY, AND A. V. ZVELINDOVSKY 50

incompressible bulk fluids [18], however, for compressible
fluids both the poloidal and toroidal modes exist. More-
over, the tangential random forces also lead to contribu-
tions to the fluctuating poloidal fields. Our approach in-
cludes both the radial and tangential random stresses act-
ing at the interface. The liquids are considered to be
compressible. We have also taken into account the redis-
tribution of the surfactant molecules on the micelle sur-
face. The surface energy density depends on the curva-
ture which may be significant for micelles with small sur-
face tension. It is worth mentioning that in our ap-
proach, we have assumed the surfactant to be insoluble in
both the volume liquids (inside and outside the mi-
croemulsion droplet). Other possible situations which are
necessary to consider in a more general theory are well
described in Ref. [29]. In some cases our approximation
(when the flow of surfactants into the bulk phase is
neglected) will be no longer valid.

The contribution to the spectral densities for the bulk
hydrodynamic fields of the fluctuating droplet differs
from that for a homogeneous unbounded liquid by a
discrete character of the wave numbers. The surface ex-
citations strongly depend on the relation between the
droplet radius, the penetration depth of viscous wave and
the sound wavelength. We have considered a few special
cases of such excitations. For micelles, in the case when
the presence of surfactants on the droplet surface is negli-
gible (incompressible surface layer), these excitations are
overdamped and the spectrum is nearly a Lorentzian
with the relaxation time 7,, from Eq. (54). For model
(impenetrable)  vesicles, the condition (w,/w,)*
~n?/aR,<<1 from Eq. (58) is satisfied. This corre-
sponds to the low-damped capillary wave for the droplets
with large radii. We have also obtained the spectrum of
fluctuations of the surfactant concentration amplitudes
that coincides with the previously found redistribution
mode [9]. In this paper, we presented an illustrative nu-
merical analysis which shows the dependence of the DSF
on various parameters of the system. For the detailed
comparison of the theory with experiment, the obtained
DSF has to be averaged over the equilibrium distribution
in the droplet radii. We assumed that such an averaging
leads to small corrections that is true if the polydispersity
of the droplets is small compared to unity. This is not al-
ways an experimental situation. Thus, the precise
analysis requires explicit calculations of the relevant ther-
modynamic parameters based on a rigorous treatment of
the thermodynamics of microemulsion systems [29].
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